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Nitrosyl cobalt and nitrosyl iron complexes, Co- 
(J-R)NO (R = en, pn, ph), Fe(J-R)NO (R = ph, mph) 
and Fe(bza-ph)NO, were synthesized, where HZ 
(J-R) are Jager-type ligands with bridging group 
R (en = ethylene; pn = 1,2-propylene; ph = o- 
phenylene; mph = 4-methyl-o-phenylene) combining 
two imino-nitrogens and Hz(bza-ph) is N,N’-bis(2- 
benzoylethylidene)-o-phenylenediamine. Co(J-R)NO 
showed a N-O stretching band in the region 1663- 
1698 cm-‘. The nitrosyl iron complexes had sub- 
normal magnetic moments at room temperature and 
showed two vno bands. Based on the measurements 
of magnetic moments in the temperature range 80- 
300 K, these complexes were revealed to be in a spin 
equilibrium between the s = 312 and s = l/2 states. 
N-O frequencies and ESR parameters of the 
complexes were discussed in terms of electron-with- 
drawing effect of the acetyl group attached to the 
Jager-type ligands. 

Introduction 

Much attention has been devoted to cobalt(R) 
complexes with quadridentate Schiff bases as models 
of natural oxygen carriers. Previously, we showed 
that the cobalt(H) complexes with Jager-type 
ligands can reversibly bind molecular oxygen at 
room temperature [l] . These complexes markedly 
differ in oxygenation reaction from N,N’-disalicyli- 
deneethylenediaminatocobalt(I1) (Co(salen)), N,N’- 
bis( 1 -acetonylethylidene)ethylenediaminatocobalt(II) 
(Co(acacen)) and their homologues, whose 
oxygenated complexes are only stable in solution at 
low temperature and irreversibly oxidized at room 
temperature [2, 31. The characteristic of the cobalt- 
(II) complexes with Jager-type ligands may be attri- 
buted to the acetyl group attached to the y-position, 
which attracts electrons from the cobalt(I1) ion 
through the n-conjugated system of the ligand and 
lowers the d-orbital energy. The importance of meso- 
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M=Co,Fe 

Fig. 1. Structure of (a) M(J-R)NO and (b) Fe(bza-ph)NO. 

merit effect of the substituent on the electron 
density at the central metal ion is also known for the 
nickel(I1) complexes with the N,-macrocycles derived 
from Jager-type type ligands [4]. 

In this study, nitrosyl cobalt and nitrosyl iron 
complexes, Co(J-R)NO (R = en, pn, ph) and 
Fe(J-R)NO (R = ph, mph) (Fig. l), were synthe- 
sized and their vibrational and ESR spectra were 
examined in terms of the electron-withdrawing effect 
of the acetyl group, where H,(J-R) denotes Jager- 
type ligands with ethylene (R = en), 1,2-propylene 
(pn), o-phenylene (ph) or &methyl+phenylene 
(mph) group combining two imino nitrogens. Nitrosyl 
iron complex, Fe(bza-ph)NO, with N,N’-bis(2- 
benzoylethylidene)o-phenylenediamine (Hzbza-ph) 
was also prepared or comparison with Fe(J-R)NO. 
The nitrosyl iron complexes obtained in this study 
have subnormal magnetic moments at room tempera- 
ture and their infrared spectra show two N-O stretch- 
ing bands. In order to clarify these phenomena, 
magnetic susceptibilities of the complexes were inves- 
tigated in a temperature range 80-300 K. 

Experimental 

Syntheses 
Jager-type ligands, H,(J-en), H*(J-pn), Hz(J-ph) 

and H,(J-mph), were synthesized after the method 
described iu .the literature [5]. H*(bza-ph) was 
prepared by the method given in the literature [6,7]. 
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Synthetic method of Co(Jen), Co(J-pn) and Co(J- 
ph) has been described in the previous paper [ 11. 

All procedures for preparing the complexes given 
below were carried out in an atmosphere of nitro- 
gen. 

Fe(J-en) 
H*(J-en) (10.0 g), iron(H) acetate (4.0 g) and 

sodium acetate (1.4 g) were added in ethanol (100 
ml) and the mixture was stirred at ca. 70 “C for 2 h 
and left stand overnight. Brown crystals thus obtain- 
ed were collected and recrystallized from ethanol. 
Found: C, 49.99; H, 5.40; N, 8.26%. Calcd for Ci4- 
H1sNz04Fe: C, 50.32; H, 5.43;N, 8.38%. 

Fe(J-ph) 
A mixture of H,(J-ph) (5.0 g) and iron(U) acetate 

(2.5 g) in ethanol (100 ml) was stirred at ca. 70 “C 
for 2 h. After being lefty standing overnight, the 
product was collected and recrystallized from etha- 
nol to give dark violet prisms. Found: C, 56.48; H, 
4.63; N, 7.26%. Calcd for C1sHlsNz04Fe: C, 56.57; 
H,4.75;N,7.33%. 

Fe(J-mph)* %H20 
This complex was obtained as dark violet prisms 

in the same way as Fe(J-ph). Found: C, 56.97; H, 
5.21; N, 6.68%. Calcd for C19Hz1Nz04.5Fe:C, 56.32; 
H, 5.22;N, 6.91%. 

Fe(bza-ph) 
A mixture of Hzbza-ph (1.5 g) and iron(I1) acetate 

(0.7 g) in ethanol (30 ml) was stirred under gently 
reflux for 1 h. The volume of the solution was con- 
centrated to ca. 15 ml and allowed to stand overnight 
to give dark green crystals. Found: C, 68.18; H, 4.33; 
N, 6.58%. Calcd for C24H1sN,02Fe: C, 68.27; H, 
4.30; N, 6.63%. 

Co(J-en)NO 
To a solution of Co(J-en) (0.5 g) in dichloro- 

methane (30 ml) was introduced a stream of nitro- 
gen monoxide, which was generated and purified 
after the method in the literature [8]. The solution 
became brown. Then, nitrogen gas bubbled through 
this solution to expel1 nitrogen monoxide. When 
petroleum ether was added to the solution, brown 
prisms separated. Found: C, 45.37; H, 4.87; N, 
11.20%. Calcd for C14H18N305C~: C, 45.79; H, 
4.94; N, 11.44%. 

Co(J-pn)NO 
This complex was obtained as brown prisms in the 

same way as Co(J-en)NO. Found: C, 46.83; H, 5.12; 
N, 11.12%. Calcd for C15HZON30sCo: C, 47.25; H, 
5.29; N, 11.02%. 

Co(J-ph)NO 
This complex was obtained as dark brown prisms 

in the same way as that of Co(Jen)NO. Found: C, 
51.69; H, 4.27; N, 10.02%. Calcd for C1sH16N30s- 
Co: C, 52.06; H, 4.37; N, 10.12%. 

Fe(J-ph)NO 
The synthetic method of this complex is practi- 

cally the same as that of Co(Jen)NO except for the 
use of Fe(J-ph) instead of Co(J-en). The product 
forms brownish black prisms. Found: C, 52.26; H, 
4.21;N, 10.06%. Calcd for C1sH1sN305Fe: C, 52.45; 
H, 4.40;N, 10.01%. 

Fe(J-mph)NO 
This complex was obtained as reddish black prisms 

in the same way as Fe(J-ph)NO. Found: C, 52.94; 
H, 4.84; N, 9.60%. Calcd for C19Hz,NJOsFe: C, 
53.54; H, 4.73; N, 9.86%. 

Fe(bza-ph)NO 
This complex was obtained as reddish black prisms 

in the same way as Fe(J-ph)NO. Found: C, 63.51; 
H, 4.01; N, 9.02%. Calcd for &H1sN303Fe: C, 
63.74;H,4.01;N, 9.29%. 

Measurements 
Infrared spectra were measured in the range 400& 

650 cm-’ with a Hitachi Infrared Spectrophotometer 
Model 215 on KBr pellets. Electronic spectra were 
measured with a Shimazu Multipurpose Spectro- 
photometer Model MSP-5000. ESR spectra were 
measured with a JES-ME-3 Spectrometer by an X- 
band. Magnetic susceptibilities were measured by the 
Faraday method in the temperature range 8&300 
K. The apparatus was calibrated by the use of HgCo- 
(NCS),. Effective magnetic moments were calculat- 
ed by the expression, peff = 2.828 X [(xA - 
Na)T] 1’2, where XA is the molar magnetic susceptibi- 
lity corrected for diamagnetism by the use of Pascal’s 
constants and Na the temperature-independent para- 
magnetism. 

Results and Discussion 

Reaction of Co(J-R) (R = en, pn, ph) with 
nitrogen monoxide formed nitrosyl complexes, Co(J- 
R)NO, in good yield. They are relatively stable in 
solid state. Magnetic measurements indicated that 
these complexes are diamagnetic. Electronic spectra 
of Co(J-R)NO were characterized by a strong absorp- 
tion around 18,000 cm-‘, which is absent in the 
spectra of Co(J-R). A similar characteristic band was 
observed for Co(acacen)NO [9] , which has a square- 
pyramidal configuration around the metal [lo] . 
It seems reasonable to assign this band to a charge 
transfer band between NO and cobalt. 



Nitrosyl Complexes of Fe and Co 195 

TABLE 1. N-O Frequencies of Nitrosyl Cobalt Complexes. 

UN0 (cm-‘) References 

TABLE II. N-O Frequencies of Nitrosyl Iron Complexes. 

VNO (cm-’ ) References 

Co(J-en)NO 1663 

Co(J-pn)NO 1665 

Co(J-ph)NO 1698 

Co(acacen)NO 1654 

Co(b.zacen)NO 1635 

Co(salen)NO 1624 

This work 

This work 

This work 

9 

9 

11 

Fe(J-ph)NO 

Fe(J-mph)NO 

Fe(bz.a-ph)NO 

Fe(salen)NO 

Fe(S-NO&en)NO 

. This 
be attributed to n-backdonation from cobalt to NO. 

Because of similarity in structure between 
Co(J-R)NO and Co(acacen)NO except for the substi- 
tuents on the ligands, a comparison of the nNo 
bands of these complexes serves for evaluating the 
effect of the acetyl substituent in Co(J-R)NO. As is 
seen in Table I, the N-O stretching frequencies of 
Co(J-R)NO are higher than that of Co(acacen)NO. 
As we have already pointed out [l] , it is likely that 
the metal d-orbitals in Co(J-R)NO are stabilized 
owing to the electron-withdrawing effect of the 
acetyl group, compared with those in Co(acacen)NO. 
Accordingly, n-backdonation from cobalt to NO 
decreases and the frequency of +o increases. 

Iron(I1) complexes, Fe(J-R) (R = en, ph, mph) 
and Fe(bza-ph), prepared in this study are high-spin, 
whose magnetic moments are in the range 5.37- 
5.46 BM at room temperature. Electronic spectra 
of these complexes in dichloromethane are character- 
ized by an absorption near 15,000 cm-’ with an 
extinction coefficient of ca. 50-70 mol-’ dm3 
cm-‘. This absorption band can be tentatively 
assigned to a d-d transition for iron(I1) ion. 

Reactions of Fe(J-ph), Fe(J-mph) and Fe(bza-ph) 
with nitrogen monoxide yielded Fe(J-ph)NO, Fe(J- 

c 1 I 

200 300 

T/K 

Fig. 2. Temperature variations of magnetic moments of 
(0) Fe(J-ph)NO, (A) Fe(Jmph)NO and (0) FeWa-ph)NO. 

mph)NO and Fe(bza-ph)NO, respectively, in good 
yield. On the other hand, we were unsuccessful in 
synthesizing Fe(J-en)NO. It seems that the aromatic 
bridges bring about a special stabilizing effect on 
nitrosyl iron complex formation with Jlger-type 
ligands. Electronic spectra of the nitrosyl complexes 
are not well resolved. Magnetic moments of Fe(J- 
ph)NO, Fe(J-mph)NO and Fe(bza-ph)NO at room 
temperature are 3.34,3.33 and 2.63 BM, respectively, 
which are quite uncommon for either high-spin 
(s = 3/2) and low-spin (s = l/2) species. 

The frequencies of VNo bands of the present nitro- 
syl iron complexes and their related complexes 
[ 15, 161 are given in Table II. Notably, the present 
complexes displayed two VNo bands. It is known that 
Fe(salen)NO and Fe(5-NOzsalen)NO (5-NOzsalen2-= 
N,N’-bis(S-nitrosalicylidene)ethylenediamine 
dianion), which are crossover complexes between the 
s = 312 and s = l/2 states, also show two VNo bands 
[15]. Thus, observations of two N-O stretching 
bands and subnormal magnetic moments suggest 
that the present complexes are in a spin-equilibrium. 
In order to verify this, magnetic susceptibilities were 
measured from liquid nitrogen temperature to room 
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temperature. The moments are plotted against 
temperature and shown in Fig. 2. The effective 
magnetic moments decrease with lowering tempera- 
ture to uz. 2.0 BM near liquid nitrogen temperature, 
which corresponds to the moment for one unpaired 
electron. Magnetic behaviors of the complexes may 
be well interpreted in terms of a spin equilibrium 
between the s = 3/2 and s = l/2 states, in which only 
the spin doublet state is practically occupied near 
liquid nitrogen temperature. Earnshaw et af. [15] 
assigned the vNo band at 1712 cm-’ to the high-spin 
species and the band at 1630 cm-’ to the low-spin 
species for Co(saien)NO, based on measurements of 
IR spectra at liquid nitrogen and room tempera- 
tures. 

Recently, the molecular structure of Fe(salen)NO 
was determined at 23’ and -175 “C [17]. The com- 
plex has a tetragonal-pyramidal coordination 
geometry with the bent FeNO fragment at both 
temperatures. However, the structure at -175 “C 
has a smaller Fe-N-O angle, a smaller displacement 
of iron from the basal plane and a higher coplanarity 
of the salicylideneimine moiety, compared with the 
structure at room temperature. These structural 
changes result in a decrease of the molecular volume 
with lowering temperature. This fact is compatible 
with the observation of the vNo band at 1610 cm-’ 
for Fe(salen)NO even at room temperature under 
high pressure [ 171. On the other hand, according to 
Hodges ef al. [16], [Fe(TMC)NO] (BF9)2 (TMC = 
1,4,8,1 I-tetramethyl-1,4,8,1 l-tetraazacyclotetradeca- 
ne), which is another nitrosyl complex displaying 
a spin equilibrium, has an intermediate configura- 
tion between a square-pyramid and a trigonal-bipy- 
ramid with a linear FeNO group. The N-O frequency 
of this complex at room temperature is very high 
(1840 cm-‘). The IR spectrum exhibits no marked 
change upon cooling down to ca. -230 “C, except 
for a broadening the vno band at 1840 cm-‘. This 
fact implies that the N-O stretching frequency of 
nitrosyl complex with a linear FeNO group does not 
greatly change even when the spin state is altered. 
Judging from a marked resemblance in N-O 
stretching mode between Fe(salen)NO and the 
present complexes, we assume that the present com- 
plexes possess a square-pyramidal configuration 
with a bent FeNO group. It seems that a structural 
change takes place in these complexes when tempera- 
ture is lowered, and this change must occur more 
abruptly in Fe(J-ph)NO than Fe(J-mph)NO and Fe- 
(bza-ph)NO, judging from the temperature depen- 
dences of magnetic moments given in Fig. 2. 

In order to evaluate the electron-withdrawing 
effect of the acetyl substituent, we compared VNo 
frequencies of Fe(J-R)NO with that of Fe(bza- 
ph)NO. As is seen in Table II, Fe(J-ph)NO and Fe(J- 
mph)NO show VNo bands at 1790 and -1710 cm-‘, 
which are higher than those (1730 and 1645 cm-‘) of 

Fig. 3. ESR spectra of (a) Fe(J-ph)NO and (b) Fe(bza-ph)NO 
in a frozen solution (in a 1 :l mixture of toluene and chloro- 

form at 78 K). 

Fe(bza-ph)NO, respectively. High VNo frequency for 
Fe(J-R)NO might indicate that the acetyl group 
attracts electrons from the metal ion thereby lower- 
ing the d-orbital energy and reducing the degree of 
n-backdonation. 

ESR spectra of Fe(J-ph)NO, Fe(J-mph)NO and 
Fe(bza-ph)NO were measured in a frozen solution 
(in a 1:l mixture of toluene and chloroform) at 
liquid nitrogen temperature. The spectra of Fe(J-ph)- 
NO and Fe(bza-ph)NO are shown in Fig. 3. The 
spectrum of Fe(J-mph)NO is almost the same as that 
of Fe(J-ph)NO. ESR bands observed are attributed 
to a low-spin species, since measurements were car- 
ried out at liquid nitrogen temperature. The spectra 
of Fe(J-ph)NO and Fe(bza-ph)NO resemble in shape 
each other and exhibit a superhyperfme structure due 
to 14N nucleus of nitrogen monoxide. However, 
Fe(J-ph)NO displays a larger anisotropy compared 
with Fe(bza-ph)NO. This fact implies that the contri- 
bution from iron d-orbital to the molecular orbital 
containing an unpaired electron is larger in Fe(J-ph)- 
NO than in Fe(bza-ph)NO. This is in line with our 
view that the energy of the metal d-orbital of Fe(J- 
R)NO is lowered by an electron-withdrawing effect 
of the acetyl substituent. It is to be noticed that ESR 
spectra of the present complexes bear a marked 
resemblance to that of Fe(TPP)NO [18]. This adds 
a strong support for the square-pyramidal structure 
with a bent FeNO fragment for the present 
complexes, since the same structure was demonstrat- 
ed for Fe(TPP)NO from X-ray analysis [ 191. 

The ESR spectrum of Fe(J-ph)NO in the presence 
of excess pyridine (Fig. 4) indicates that Fe(J-ph)- 
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Fig. 4. ESR spectrum of Fe(J-ph)NO in the presence of 
excess pyridine (in 1:l mixture of toluene and chloroform 
at 78 K). 
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plexes. It is likely that the orbital containing an 
unpaired electron of Fe(J-ph)NOpy possesses a lower 
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This suggests that metal d-orbitals for hemoproteins 
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Fe(J-R), owing to electron-delocalization due to the 
n-conjugated system of porphyrin. 
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